2 | ||
lim | ||
x2−3x |
x2 −10x+25 | ||
lim | ||
2x−10 |
2+x | ||
lim | ||
x |
2x | ||
lim | ||
x−3 |
1 | ||
lim | ||
(x+2)2 |
2 | 2 | |||
limx→1 | = [ | ] = −1 | ||
x2−3x | 1−3 |
x2−10x+25 | (x−5)2 | x−5 | ||||
limx→5 | = limx→5 | = limx→5 | = 0 | |||
2x−10 | 2(x−5) | 2 |
2+x | 2+(−2) | |||
limx→−2 | = [ | ] = 0 | ||
x | −2 |
2x | 6 | |||
limx→3+ | = [ | ] = ∞ | ||
x−3 | 0+ |
2x | 6 | |||
limx→3− | = [ | ] = −∞ | ||
x−3 | 0− |
1 | 1 | |||
limx→−2+ | = [ | ] = ∞ | ||
(x+2)2 | 0+ |
1 | 1 | |||
limx→−2− | = [ | ] = ∞ | ||
(x+2)2 | 0+ |
1 | ||
więc limx→−2 | = ∞ | |
(x+2)2 |