√1+x2 | ||
∫ | dx | |
1+x2 |
1 | |
dx | |
(1+x2)2 |
x | 1 | x2 | ||||
( | ) ' = | − 2 | = | |||
1+x2 | 1+x2 | (1+x2)2 |
1 | x2+1 − 1 | |||
= | − 2 | |||
1+x2 | (1+x2)2 |
1 | 2 | |||
= − | + | |||
1+x2 | (1+x2)2 |
1 | 1 | x | ||||
∫ | = | ( | + atan x) | |||
(1+x2)2 | 2 | 1+x2 |
1 | (1+x2)−x2 | ||
= | |||
(x2+1)2 | (1+x2)2 |
1 | 1 | x2 | |||
= | − | ||||
(x2+1)2 | 1+x2 | (1+x2)2 |
x2 | ||
∫ | dx | |
(1+x2)2 |
x | ||
u=x dv= | dx | |
(1+x2)2 |
1 | 1 | ||
du=dx v=− | |||
2 | 1+x2 |
dx | 2 | 2dt | ||||
∫ | = ∫ | (1+1/t2) dt = ∫ | = 2 ln t | |||
√1+x2 | t+1/t | t |