| 1 | ||
Zauważmy że za u możemy przyjąć | x2 | |
| 2 |
| 1 | 1 | |||
ale także i | x2 − | |||
| 2 | 2 |
| 1 | 1 | |||
u = | (x2−1) , dv = | dx | ||
| 2 | x+1 |
| 1 | 1 | 1 | ||||
∫xln(1+x)dx = | (x2−1)ln(1+x) − | ∫(x2−1) | dx | |||
| 2 | 2 | 1+x |
| 1 | 1 | |||
∫xln(1+x)dx = | (x2−1)ln(1+x) − | ∫(x−1)dx | ||
| 2 | 2 |
| 1 | 1 | |||
∫xln(1+x)dx = | (x2−1)ln(1+x) − | (x−1)2 | ||
| 2 | 4 |