| x5+2x3+4x+4 | ||
∫ | dx | |
| x4+2x3+2x2 |
| cos2xdx | ||
∫ | ||
| cos2x |
| xdx | ||
∫ | ||
| (x+1)12+(x+1)13 |
| 3x3dx | ||
∫ | ||
| √x2+4x+5 |
| sin 2n | ||
lim→∞ p3{ | ||
| 1n |
| 1 | 1 | 1 | ||||
(ln(ln(lnx)))'= | *(ln(lnx))'= | * | *(lnx)'= | |||
| ln(lnx) | ln(lnx) | lnx |
| 1 | 1 | 1 | ||||
= | * | * | ||||
| ln(lnx) | lnx | x |
| 1 | 3 | |||
∫(e−x+1)3dx=∫e−3x+3e−2x+3e−x+1 dx = − | e−3x− | e−2x−3e−x+x+c | ||
| 3 | 2 |
| 1 | x | sin(2x) | ||||
∫cos2xdx= | ∫1+cos(2x)dx = | + | +c | |||
| 2 | 2 | 4 |
| sinx | ||
limx→∞ arctg( | ) = arctg(0) = 0 | |
| x |
| x5 + 2 x3 + 4 x + 4 | |
= | |
| x4 + 2 x3 + 2 x2 |
| 4 + 4 x + 4 x2 + 4 x3 | ||
=−2 + x + | ||
| x4 + 2 x3 + 2 x2 |
| 3x3 | 1 | |||
∫ | dx=(ax2+bx+c)√x2+4x+5+A∫ | dx | ||
| √x2+4x+5 | √x2+4x+5 |
| 3x3 | x+2 | A | |||
=(2ax+b)√x2+4x+5+(ax2+bx+c) | + | ||||
| √x2+4x+5 | √x2+4x+5 | √x2+4x+5 |
| 3x3 | 1 | |||
∫ | dx=(x2−5x+20)√x2+4x+5−15∫ | dx | ||
| √x2+4x+5 | √x2+4x+5 |
| 1 | 1 | |||
∫ | dx=∫ | dx | ||
| √x2+4x+5 | √(x+2)2+1 |
| cosht | ||
∫ | dt=∫dt = t = asinh(x+2)+c | |
| √sinh2t+1 |
| 3x3 | ||
∫ | dx=(x2−5x+20)√x2+4x+5−15asinh(x+2)+c | |
| √x2+4x+5 |
| −2+2x2+x+(2(1+2x)) | ||
∫ | dx = U{−(2x)−2x+x2}{2−2arctg[1 + x] | |
| (2+2x+x2)) |
| −(2x)−2x+x2 | ||
= | ||
| 2−2arctg[1 + x]+2ln[2+2x+x2] |
| x | ||
∫ | dx | |
| √x+1+3√x+1 |
| t6−1 | t9−t3 | |||
6∫ | *t5dt = 6∫ | dt | ||
| t3+t2 | t+1 |
| t9+t8−t8−t7+t7+t6−t6−t5+t5+t4−t4−t3 | ||
=6∫ | dt = 6∫t8−t7+t6−t5+t4−t3dt = | |
| t+1 |
| 2 | 3 | 6 | 6 | 3 | ||||||
= | t9− | t8+ | t7−t6+ | t5− | t4+c = | |||||
| 3 | 4 | 7 | 5 | 2 |
| 2 | 3 | 6 | 6 | |||||
= | 6√x+19− | 6√x+18+ | 6√x+17−6√x+16+ | 6√x+15− | ||||
| 3 | 4 | 7 | 5 |
| 3 | ||
− | 6√x+14+c | |
| 2 |
| x5+2x3+4x+4 | x5+2x3+4x+4 | |||
∫ | dx=∫ | dx | ||
| x4+2x3+2x2 | x2(x2+2x+2) |
| x5+2x3+4x+4 | x5+x3 | 4x+4 | ||||
∫ | dx=∫ | dx+∫ | dx | |||
| x2(x2+2x+2) | x2(x2+2x+2) | x2(x2+2x+2) |
| x3+x | (2x2+4x+4)−2x2 | |||
=∫ | dx+∫ | dx | ||
| x2+2x+2 | x2(x2+2x+2) |
| x3+x−2 | 2 | |||
=∫ | +∫ | dx | ||
| x2+2x+2 | x2 |
| 3x+2 | 2 | |||
=∫(x−2)dx+ | dx+∫ | dx | ||
| (x+1)2+1 | x2 |
| 3x3 | ||
∫ | dx | |
| √x2+4x+5 |
| t2−5 | ||
x= | ||
| 2t+4 |
| 2t2+4t−t2+5 | t2+4t+5 | |||
t−x= | = | |||
| 2t+4 | 2t+4 |
| 2t(2t+4)−2(t2−5) | ||
dx= | dt | |
| (2t+4)2 |
| 2t2+8t+10 | ||
dx= | dt | |
| (2t+4)2 |
| (t2−5)3 | 2t+4 | 2(t2+4t+5) | ||
3∫ | dt | |||
| (2t+4)3 | t2+4t+5 | (2t+4)2 |
| (t2−5)3 | ||
6∫ | dt | |
| (2t+4)4 |
| 3 | (t2−5)3 | ||
∫ | dt | ||
| 8 | (t+2)4 |
| 1 | ||
∫cos2xdx= | (sin(x)cos(x)+x)+C | |
| 2 |