x5+2x3+4x+4 | ||
∫ | dx | |
x4+2x3+2x2 |
cos2xdx | ||
∫ | ||
cos2x |
xdx | ||
∫ | ||
(x+1)12+(x+1)13 |
3x3dx | ||
∫ | ||
√x2+4x+5 |
sin 2n | ||
lim→∞ p3{ | ||
1n |
1 | 1 | 1 | ||||
(ln(ln(lnx)))'= | *(ln(lnx))'= | * | *(lnx)'= | |||
ln(lnx) | ln(lnx) | lnx |
1 | 1 | 1 | ||||
= | * | * | ||||
ln(lnx) | lnx | x |
1 | 3 | |||
∫(e−x+1)3dx=∫e−3x+3e−2x+3e−x+1 dx = − | e−3x− | e−2x−3e−x+x+c | ||
3 | 2 |
1 | x | sin(2x) | ||||
∫cos2xdx= | ∫1+cos(2x)dx = | + | +c | |||
2 | 2 | 4 |
sinx | ||
limx→∞ arctg( | ) = arctg(0) = 0 | |
x |
x5 + 2 x3 + 4 x + 4 | |
= | |
x4 + 2 x3 + 2 x2 |
4 + 4 x + 4 x2 + 4 x3 | ||
=−2 + x + | ||
x4 + 2 x3 + 2 x2 |
3x3 | 1 | |||
∫ | dx=(ax2+bx+c)√x2+4x+5+A∫ | dx | ||
√x2+4x+5 | √x2+4x+5 |
3x3 | x+2 | A | |||
=(2ax+b)√x2+4x+5+(ax2+bx+c) | + | ||||
√x2+4x+5 | √x2+4x+5 | √x2+4x+5 |
3x3 | 1 | |||
∫ | dx=(x2−5x+20)√x2+4x+5−15∫ | dx | ||
√x2+4x+5 | √x2+4x+5 |
1 | 1 | |||
∫ | dx=∫ | dx | ||
√x2+4x+5 | √(x+2)2+1 |
cosht | ||
∫ | dt=∫dt = t = asinh(x+2)+c | |
√sinh2t+1 |
3x3 | ||
∫ | dx=(x2−5x+20)√x2+4x+5−15asinh(x+2)+c | |
√x2+4x+5 |
−2+2x2+x+(2(1+2x)) | ||
∫ | dx = U{−(2x)−2x+x2}{2−2arctg[1 + x] | |
(2+2x+x2)) |
−(2x)−2x+x2 | ||
= | ||
2−2arctg[1 + x]+2ln[2+2x+x2] |
x | ||
∫ | dx | |
√x+1+3√x+1 |
t6−1 | t9−t3 | |||
6∫ | *t5dt = 6∫ | dt | ||
t3+t2 | t+1 |
t9+t8−t8−t7+t7+t6−t6−t5+t5+t4−t4−t3 | ||
=6∫ | dt = 6∫t8−t7+t6−t5+t4−t3dt = | |
t+1 |
2 | 3 | 6 | 6 | 3 | ||||||
= | t9− | t8+ | t7−t6+ | t5− | t4+c = | |||||
3 | 4 | 7 | 5 | 2 |
2 | 3 | 6 | 6 | |||||
= | 6√x+19− | 6√x+18+ | 6√x+17−6√x+16+ | 6√x+15− | ||||
3 | 4 | 7 | 5 |
3 | ||
− | 6√x+14+c | |
2 |
x5+2x3+4x+4 | x5+2x3+4x+4 | |||
∫ | dx=∫ | dx | ||
x4+2x3+2x2 | x2(x2+2x+2) |
x5+2x3+4x+4 | x5+x3 | 4x+4 | ||||
∫ | dx=∫ | dx+∫ | dx | |||
x2(x2+2x+2) | x2(x2+2x+2) | x2(x2+2x+2) |
x3+x | (2x2+4x+4)−2x2 | |||
=∫ | dx+∫ | dx | ||
x2+2x+2 | x2(x2+2x+2) |
x3+x−2 | 2 | |||
=∫ | +∫ | dx | ||
x2+2x+2 | x2 |
3x+2 | 2 | |||
=∫(x−2)dx+ | dx+∫ | dx | ||
(x+1)2+1 | x2 |
3x3 | ||
∫ | dx | |
√x2+4x+5 |
t2−5 | ||
x= | ||
2t+4 |
2t2+4t−t2+5 | t2+4t+5 | |||
t−x= | = | |||
2t+4 | 2t+4 |
2t(2t+4)−2(t2−5) | ||
dx= | dt | |
(2t+4)2 |
2t2+8t+10 | ||
dx= | dt | |
(2t+4)2 |
(t2−5)3 | 2t+4 | 2(t2+4t+5) | ||
3∫ | dt | |||
(2t+4)3 | t2+4t+5 | (2t+4)2 |
(t2−5)3 | ||
6∫ | dt | |
(2t+4)4 |
3 | (t2−5)3 | ||
∫ | dt | ||
8 | (t+2)4 |
1 | ||
∫cos2xdx= | (sin(x)cos(x)+x)+C | |
2 |