matematykaszkolna.pl
prosze o pomoc z równaniem trygonometrycznym eff: prosze o pomoc z równaniem trygonometrycznym sin4 x − cos4 x=1
14 sty 20:39
===: (sin2x+cos2x)(sin2x−cos2x)=1 cos2x−sin2x=−1 cos2x=−1 itd emotka
14 sty 20:42
Pełcio: (sin2x−cos2x)(sin2x+cos2x)=1 (sinx−cosx)(sinx+ cosx)=1
14 sty 20:43
eff: a co gdyby bylo sin4 x + cos4 x
14 sty 20:56
Adamm: sin4x+cos4x=1 czy sin(4x)+cos(4x)=1
14 sty 21:05
eff: tak jak napisalam
14 sty 21:06
eff: a nie pomyłka jednak chodzi o 4 do potęgi oczywiscie
14 sty 21:06
===: byłaby tożsamość
14 sty 21:08
Adamm: sin(4x)+cos(4x)=1 2sin(4x+π/4)=1
 2 
sin(4x+π/4)=

 2 
sin(4x+π/4)=sin(π/4) 4x+π/4=π/4+2kπ lub 4x+π/4=3π/4+2kπ
  π  
x=

lub x=

+

 2 8 4 
14 sty 21:10
piotr: sin4x+cos4x=1 1−2 sin2(x)+2 sin4(x)=1 2 sin4(x)−2 sin2(x)=0 2 sin2(x) (sin(x)−1) (1+sin(x))=0 sin(x)−1=0 ∨ sin2(x)=0 ∨ 1+sin(x)=0
14 sty 21:36
Mariusz: (sin2(x)+cos2(x))2−2sin2(x)cos2(x)=1 1−2sin2(x)cos2(x)=1; −2sin2(x)cos2(x)=0 4sin2(x)cos2(x)=0 sin2(2x)=0
1 

(1−cos(4x))=0
2 
1−cos(4x)=0 cos(4x)=1 4x=2kπ
  
x=

k∊ℤ
 2 
14 sty 23:35