| x | ||
∫√ | dx= | |
| 1−x |
| √x | √1−x | |||
to | i to | (tak było w granicach przy metodzie mnożenie przez | ||
| √x | √1−x |
| √1−x | ||
sprzężenie)czy mam tylko przemnożyć przez | ![]() | |
| √1−x |
| 2t2 | ||
Podstawienie prowadzi do: ∫ | dt | |
| (t2 +1)2 |
| x | |
i metoda nieoznaczonych? | |
| √x−x2 |
| 1−2x | 1 | 1 | ||||
−∫ | − | dx = −√x−x2+∫ | dx | |||
| 2√x−x2 | √x−x2 | √x−x2 |
| x | x | 1 | (1−x)+x | |||||||||||||
∫√ | dx=(x−1)√ | −∫(x−1) | dx | |||||||||||||
| 1−x | 1−x |
| (1−x)2 |
| x | 1 | 1 | ||||||||||||
=(x−1)√ | −∫(x−1) | dx | ||||||||||||
| 1−x |
| (1−x)2 |
| x | 1 | 1 | ||||||||||||
=(x−1)√ | +∫ | dx | ||||||||||||
| 1−x |
| (1−x) |
| x | ||
t2= | ||
| 1−x |
| (1−x)−x | ||
2tdt= | dx | |
| (1−x)2 |
| 1 | ||
2tdt= | dx | |
| (1−x)2 |
| x−1+1 | ||
t2= | ||
| 1−x |
| 1 | ||
t2=−1+ | ||
| 1−x |
| 1 | ||
t2+1= | ||
| 1−x |
| 1 | ||
2tdt= | (t2+1)dx | |
| (1−x) |
| 1 | 2t | ||
dx= | dt | ||
| (1−x) | t2+1 |
| 1 | 1 | 1 | 2t | ||||||||||||
∫ | dx=∫ | dt | |||||||||||||
| (1−x) | 2t | t2+1 |
| 1 | 1 | |||||||||||
∫ | dx=arctan(t)+C | |||||||||||
| (1−x) |
| x | x | |||
=(x−1)√ | +arctan(√ | )+C | ||
| 1−x | 1−x |
| x | ||
t2 = | ||
| 1−x |
| t2 | ||
x= | ||
| 1+t2 |
| x | t2 | |||
∫ ( | )1/2 dx = ∫ t ( | ) ' dt = | ||
| 1−x | 1+t2 |
| t3 | t2 | t3 | ||||
= | − ∫ | dt = | − t + atan t | |||
| 1+t2 | 1+t2 | 1+t2 |
| 1 | x | |||
= − | + atan t = atan ( | )1/2 − 1 + x | ||
| 1+t2 | 1−x |