| √x2+1 − √x+1 | ||
lim {x→0} | ||
| 1− √x+1 |
| √x2+1−√x+1 | 1+√x+1 | |||
=limx→0 | * | = | ||
| 1−√x+1 | 1+√x+1 |
| (√x2+1−√x+1)*(1+√x+1) | ||
=limx→0 | = | |
| 1−x−1 |
| (√x2+1−√x+1)*(1+√x+1) | (√x2+1+√x+1) | |||
=limx→0 | * | = | ||
| −x | (√x2+1+√x+1) |
| (x2−x)*(1+√x+1) | ||
=limx→0 | = | |
| (−x)*(√x2+1+√x+1) |
| x*(x−1)*(1+√x+1) | ||
=limx→0 | =1 | |
| (−x)*(√x2+1+√x+1) |