dx | ||
Oblicz całkę ∫ | ||
√x2+2x |
dx | ||
=∫ | = y, cosh y = x+1 | |
√(x+1)2 −1 |
t2 | ||
x= | ||
2t+2 |
2t2+2t−t2 | t2+2t | |||
t−x= | = | |||
2t+2 | 2t+2 |
2t(2t+2)−2t2 | ||
dx= | dt | |
(2t+2)2 |
2t2+4t | ||
dx= | dt | |
(2t+2)2 |
2t+2 | 2(t2+2t) | ||
∫ | dt | ||
t2+2t | (2t+2)2 |
dt | ||
∫ | =ln|t+1|+C | |
t+1 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |