| xn | ||
∑ | ||
| n+3 |
| 1 | ||
∑ | * xn | |
| n+3 |
| n+4 | |||||||||
lim | | | = lim | = 1 = R | ||||||||
| n+3 |
| 1 | ||
∑ | szereg rozbiezny. | |
| n+3 |
| (−1)n | ||
∑ | ||
| n+3 |
| (−1)n | 1 | |||
| | | = | ten szereg jest rozbiezny,czyli o szeregu wyjsciowym nic nie wiemy. | ||
| n+3 | n+3 |
| 1 | ||
lim | = 0 | |
| n+3 |
| 1 | 1 | 1 | |||
≥ | ≥ | ||||
| 4 | 5 | 6 |
| (−1)n | ||
wniosek : Szereg −> ∑ | jest zbiezny warunkowo (na mocy kryterium Leibnitza) | |
| n+3 |
| 1 | 1 | |||
∑ ( | )n * | |||
| 3 | n+3 |
| xn | ∫xn+2dx | |||
Zauważ, że | = | dla x≠0 | ||
| n+3 | x3 |
| 1 | ||
x2+x3+x4+...= | *x2 | |
| 1−x |
| x3 | x4 | 1 | |||
+ | +...=− | x2−x−ln(1−x) | |||
| 3 | 4 | 2 |
| 1 | x | 1 | 1 | ln(1−x) | |||||
+ | +...=− | − | − | ||||||
| 3 | 4 | 2x | x2 | x3 |
| 1 | 1 | 3 | 21 | |||||
stąd ∑n=0 ( | )n | = 27ln( | )− | |||||
| 3 | n+3 | 2 | 2 |