3π | ||
Rozwiąż równanie √3 sin2x + 3cos2x = 0 w przedziale < | ; 2π>. | |
2 |
π | kπ | |||
na końcu otrzymałam x= − | + | |||
12 | 2 |
1 | √3 | ||
sin(2x) + | cos(2x) = 0 | ||
2 | 2 |
π | ||
sin(2x + | ) = 0 | |
3 |
π | ||
2x + | = k • π | |
3 |
π | π | |||
x = − | + k • | |||
6 | 2 |
1 | √3 | ||
sin(2x)+ | cos(2x)=0 | ||
2 | 2 |
π | π | |||
sin(2x)cos | +cos(2x)*sin | =0 | ||
3 | 3 |
π | ||
sin(2x+ | )=0 | |
3 |
π | ||
2x+ | =kπ | |
3 |
π | kπ | |||
x=− | + | |||
6 | 2 |
π | 3π | |||
k=0 to x=− | ∉< | ,2π> | ||
6 | 2 |
π | π | 2π | 3π | |||||
k=1 to x=− | + | = | ∉< | ,2π> | ||||
6 | 2 | 6 | 2 |
π | 2π | π | 3π | |||||
k=2 to x=− | + | =− | +π∉< | ,2π> | ||||
6 | 2 | 6 | 2 |
π | 3π | 3π | ||||
k=3 to x=− | + | ∉< | ,2π> | |||
6 | 2 | 2 |
π | 4π | π | 11π | 3π | ||||||
k=4 to x=− | + | =− | +2π= | ∊< | ,2π> | |||||
6 | 2 | 6 | 6 | 2 |
11π | ||
odp. x= | ||
6 |
π | ||
√3 sin2x=−3cos2x /: cos2x [ cos2x= 0 dla x= | , | |
4 |
π | ||
ale | nie spełnia równania, więc mozemy tak podzielić obie strony równania] | |
4 |
sin2x | ||
√3 | =−3 | |
cos2x |
π | ||
2x=− | +kπ | |
3 |