1 | ||
wiedzac ze sinα−cosα=− | oblicz sin2α | |
6 |
1 | ||
sinα−cosα=− | /2 | |
6 |
1 | ||
sin2α−2sinαcosα+cos2α= | ||
36 |
1 | ||
−sin2α=−1+ | ||
36 |
35 | ||
sin2α= | ||
36 |
1 | ||
sin(α) − cos(α) = − | ||
6 |
5 | ||
sin2(α) + cos2(α) + sin(α) − cos(α) = | ||
6 |
5 | ||
sin2(α) − sin(2α) + cos2(α) + sin(α) − cos(α) + sin(2α) = | ||
6 |
5 | ||
[sin(α) − cos(α)]2 + sin(α) − cos(α) + sin(2α) = | ||
6 |
1 | 1 | 5 | |||
− | + sin(2α) = | ||||
36 | 6 | 6 |
35 | ||
sin(2α) = | ||
36 |