1+log(x−1) | |
+U{1}{1−log(x−1)=1 | |
1−log2(x−1) |
√3 | ||
log | (3−x)≥2 | |
3 |
1 + log ( x − 1) | 1 | ||
+ | = 1 ; x > 1 | ||
1 − log2 (x −1) | 1 − log ( x − 1) |
1 + log (x −1) | 1 | ||
+ | = 1 | ||
( 1 − log (x −1))*( 1 + log ( x −1) | 1 − log (x −1) |
1 | 1 | ||
+ | = 1 | ||
1 − log ( x −1) | 1 − log (x − 1) |
2 | |
= 1 | |
1 − log ( x − 1) |
1 | ||
x − 1 = 10−1 = | ||
10 |
1 | ||
x = 1 | ||
10 |
√3 | ||
Czy p = | ? | |
3 |
√3 | ||
log10 | ( 3 − x) ≥ 2 x < 3 | |
3 |
√3 | ||
log (√3 − | x) ≥ log 100 | |
3 |
√3 | ||
√3 − | x ≥ 100 / *3 | |
3 |