Pochodne
Monika: Badając pochodne jednostronne rozstrzygnąć, czy istnieją pochodne podanych funkcji we
wskazanych punktach:
a) f(x) = min {x2, 1}, x0 = −1
4 sty 17:32
Adamm: lim
x→−1− min{x
2, 1} = lim
x→−1− 1 = 1
lim
x→−1+ min{x
2, 1} = lim
x→−1+ x
2 = 1
f(−1)=1, funkcja jest ciągła w tym punkcie
| f(−1+Δx)−f(−1) | | (−1+Δx)2−1 | |
limΔx→0+ |
| = limΔx→0+ |
| = −2 |
| Δx | | Δx | |
| f(−1+Δx)−f(−1) | | 1−1 | |
limΔx→0− |
| = limΔx→0− |
| = 0 |
| Δx | | Δx | |
pochodne stronne są różne
4 sty 17:40
Adamm:
można to przedstawić graficznie, już z rysunku widać że w punktach x=±1 funkcja nie ma
pochodnych
4 sty 17:42
Monika: Dzieki
4 sty 17:59