1 − cos2x | ||
Wykorzystaj: sin2x = | ||
2 |
1 | ||
3x = t , 3dx = dt , dx = | dt | |
3 |
1 | 1 | 1 − cos2t | 1 | 1 | 1 | |||||||
= | ∫sin2tdt = | ∫ | dt = | (∫ | dt − | ∫cos2tdt) | ||||||
3 | 3 | 2 | 3 | 2 | 2 |
1 | ||
∫sin(3x)sin(3x)dx=− | cos(3x)sin(3x)+∫cos2(3x)dx | |
3 |
1 | ||
∫sin2(3x)dx=− | cos(3x)sin(3x)+∫(1−sin2(3x))dx | |
3 |
1 | ||
∫sin2(3x)dx=− | cos(3x)sin(3x)+∫dx−∫sin2(3x)dx | |
3 |
1 | ||
2∫sin2(3x)dx=− | cos(3x)sin(3x)+x+C1 | |
3 |
1 | 1 | |||
∫sin2(3x)dx=− | cos(3x)sin(3x)+ | x+C | ||
6 | 2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |