2n2+3n−2 | n−1/2 | |||
lim ( | )n−1=( | )n−1 = | ||
2n2+n+2 | n+1/2 |
2n2+3n−2 | (2n−1)(n+2) | 2n−1 | 2n+1−2 | ||||
= | = | = | = | ||||
2n2+5n+2 | (2n+1)(n+2) | 2n+1 | 2n+1 |
2 | 1 | |||
= 1 − | = 1 + | |||
2n+1 | −n−1/2 |
2n−1 | 1 | 1 | ||||
lim ( | )n−1=lim [(1+ | )−n−1/2](n−1) / (−n−1/2)=e−1= | ||||
2n+1 | −n−1/2 | e |
2n2+3n+2 | (n+2)*(2n−1) | ||
= | = | ||
2n2+5n+2 | (n+2)*(2n+1) |
2n−1 | 2n+1−1−1 | −2 | ||||
= | = | =(1+ | ) | |||
2n+1 | 2n+1 | 2n+1 |
−2 | ||
lim n→∞(1+ | )n−1= | |
2n+1 |
−2 | 1 | |||
=lim n→∞[(1+ | )2n+1−2] −2(n−1)(2n+1) =e(−1)= | |||
2n+1 | e |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |