1 | ||
b) | exp1x | |
x3 |
1 | ||
c) | ||
xln2x |
1 | −1 | |||
b) | =t, dt= | dx | ||
x | x2 |
1 | ||
c)lnx=t, dt= | dx | |
x |
(x+1)11 | 1 | |||
x | − | ∫(x+1)11dx | ||
11 | 11 |
(x+1)11 | 1 | |||
x | − | (x+1)12+C | ||
11 | 132 |
1 | 1 | 1 | ||||
∫(− | )(− | exp( | ))dx | |||
x | x2 | x |
1 | 1 | 1 | 1 | |||||
=− | exp( | )+∫(− | exp( | ))dx | ||||
x | x | x2 | x |
1 | 1 | 1 | ||||
=− | exp( | )+exp( | )+C | |||
x | x | x |
1 | 1 | |||
=(1− | )exp( | )+C | ||
x | x |
dx | |
=dt | |
x |
dt | 1 | |||
∫ | =− | +C | ||
t2 | t |
1 | ||
=− | +C | |
ln(x) |