| 1 | ||
b) | exp1x | |
| x3 |
| 1 | ||
c) | ||
| xln2x |
| 1 | −1 | |||
b) | =t, dt= | dx | ||
| x | x2 |
| 1 | ||
c)lnx=t, dt= | dx | |
| x |
| (x+1)11 | 1 | |||
x | − | ∫(x+1)11dx | ||
| 11 | 11 |
| (x+1)11 | 1 | |||
x | − | (x+1)12+C | ||
| 11 | 132 |
| 1 | 1 | 1 | ||||
∫(− | )(− | exp( | ))dx | |||
| x | x2 | x |
| 1 | 1 | 1 | 1 | |||||
=− | exp( | )+∫(− | exp( | ))dx | ||||
| x | x | x2 | x |
| 1 | 1 | 1 | ||||
=− | exp( | )+exp( | )+C | |||
| x | x | x |
| 1 | 1 | |||
=(1− | )exp( | )+C | ||
| x | x |
| dx | |
=dt | |
| x |
| dt | 1 | |||
∫ | =− | +C | ||
| t2 | t |
| 1 | ||
=− | +C | |
| ln(x) |