| Wn(x) | A | |||
∫ | = Pn−1(x) * √ax2 + bx + c + ∫ | |||
| √ax2 + bx + c | √ax2 + bx + c |
| t | ||
∫ | dt? | |
| √t√1−t |
| t*√t | t | t | ||||
Mozesz tak: = ∫ | dt = ∫√ | dt ... i podstawienie: u = √ | ||||
| t*√1−t | 1−t | 1−t |
| t | 1 | dt | ||||
dalej: u2 = | , u2 + 1 = | , 2udu = | , | |||
| 1−t | 1−t | (t−1)2 |
| 1 | ||
(u2+1)2 = | ||
| (1−t)2 |
| 2u2 | ||
i masz całkę: ∫ | du | |
| (u2+1)2 |
| t | 1 | |||
∫ | dt = a√−t2+t+A∫ | dt | ||
| √−t2+t | √−t2+t |
| t | −2t+1 | 1 | |||
=a | +A | ||||
| √−t2+t | 2√−t2+t | √−t2+t |
| t | 1 | 1 | ||||
∫ | dt = −√−t2+t+ | ∫ | dt | |||
| √−t2+t | 2 | √1/4−(t−1/2)2 |
| de | ||
dt= | ||
| 2 |
| 1 | 1 | |||
∫ | dt=∫ | de = arcsin(e)+c = arcsin(2t−1)+c | ||
| √1/4−(t−1/2)2 | √1−e2 |
| t | 1 | |||
∫ | dt=−√−t2+t+ | arcsin(2t−1)+c | ||
| √−t2+t | 2 |
| x3 + x2 + 1 | ||
∫ | dx | |
| √x2 − 9 |