| xy+1 | 9 | ||
= | |||
| y | 2 |
| yz+1 | 11 | ||
= | |||
| z | 4 |
| xz+1 | 12 | ||
= | |||
| x | 5 |
| 2 | ||
2xy + 2 = 9y −−−> y(9−2x) = 2 −−> y = | ||
| 9−2x |
| 2 | ||
y = | ||
| 9−2x |
| 8 | 91−22x | 4(9−2x) | ||||
z(11− | ) = 4 −−> z( | )=4 −−> z = | ||||
| 9−2x | 9−2x | 91−22x |
| 4(9−2x) | ||
x(12− 5 * | ) = 5 | |
| 91−22x |
| 20(9−2x) | ||
x(12 − | ) = 5 | |
| 91−22x |
| 12(91−22x) | 180−40x | |||
x( | − | ) = 5 | ||
| 91−22x | 91−22x |
| 1092 − 264x − 180 + 40x | ||
x( | ) = 5 | |
| 91−22x |
| 912 − 224x | ||
x( | ) = 5 /*(91−22x) | |
| 91−22x |
| 1 | 65 | |||
x = | lub x = | |||
| 2 | 16 |
| 2 | ||
teraz, mielismy, ze igrek : y = | zatem podstawiamy | |
| 9−2x |
| 1 | 16 | |||
y = | lub y = | |||
| 4 | 7 |
| 2 | 28 | |||
z = | lub z = | |||
| 5 | 13 |
| 1 | ||
{x = | ||
| 2 |
| 1 | ||
{y = | ||
| 4 |
| 2 | ||
{z = | ||
| 5 |
| 65 | ||
{x = | ||
| 16 |
| 16 | ||
{y = | ||
| 7 |
| 28 | ||
{z = | ||
| 13 |