xy+1 | 9 | ||
= | |||
y | 2 |
yz+1 | 11 | ||
= | |||
z | 4 |
xz+1 | 12 | ||
= | |||
x | 5 |
2 | ||
2xy + 2 = 9y −−−> y(9−2x) = 2 −−> y = | ||
9−2x |
2 | ||
y = | ||
9−2x |
8 | 91−22x | 4(9−2x) | ||||
z(11− | ) = 4 −−> z( | )=4 −−> z = | ||||
9−2x | 9−2x | 91−22x |
4(9−2x) | ||
x(12− 5 * | ) = 5 | |
91−22x |
20(9−2x) | ||
x(12 − | ) = 5 | |
91−22x |
12(91−22x) | 180−40x | |||
x( | − | ) = 5 | ||
91−22x | 91−22x |
1092 − 264x − 180 + 40x | ||
x( | ) = 5 | |
91−22x |
912 − 224x | ||
x( | ) = 5 /*(91−22x) | |
91−22x |
1 | 65 | |||
x = | lub x = | |||
2 | 16 |
2 | ||
teraz, mielismy, ze igrek : y = | zatem podstawiamy | |
9−2x |
1 | 16 | |||
y = | lub y = | |||
4 | 7 |
2 | 28 | |||
z = | lub z = | |||
5 | 13 |
1 | ||
{x = | ||
2 |
1 | ||
{y = | ||
4 |
2 | ||
{z = | ||
5 |
65 | ||
{x = | ||
16 |
16 | ||
{y = | ||
7 |
28 | ||
{z = | ||
13 |