x+1 | |||||||||||
∫ | dx | ||||||||||
|
x+1 | 1 | |||
∫ 3√ | * | dx | ||
x−1 | x+1 |
3√x(x+1) | ||
1. ∫ | dx | |
3√x−1 |
x−1 | ||
teraz na obie całki podstawienie t=( | )1/3 | |
x |
2+t | ||
u=( | )1/3 | |
t |
x+1 | ||
∫ | dx | |
3√1−1/x |
1 | ||
t3=1− | ||
x |
1 | ||
3t2dt= | dx | |
x2 |
3t2 | ||
dx= | dt | |
(t3−1)2 |
1 | ||
− | =t3−1 | |
x |
1 | ||
x=− | ||
t3−1 |
t3−2 | ||
x+1= | ||
t3−1 |
t3−2 | 1 | 3t2 | ||
∫ | dt | |||
t3−1 | t | (t3−1)2 |
3t4−6t | ||
∫ | dt | |
(t3−1)3 |
3t4−6t | ||
∫ | dt | |
(t3−1)3 |
6t4−6t | 3t4 | |||
∫ | dt−∫ | dt | ||
(t3−1)3 | (t3−1)3 |
6t | 3t4 | |||
∫ | dt−∫ | dt | ||
(t3−1)2 | (t3−1)3 |
6t | t2 | (−6t2) | |||
∫ | dt+∫ | dt | |||
(t3−1)2 | 2 | (t3−1)3 |
6t | 1 | t2 | t | ||||
∫ | dt+ | −∫ | dt | ||||
(t3−1)2 | 2 | (t3−1)2 | (t3−1)2 |
1 | t2 | 5t | |||
= | +∫ | dt | |||
2 | (t3−1)2 | (t3−1)2 |
5t | 5t−5t4 | 5t4 | ||||
∫ | dt=∫ | +∫ | dt | |||
(t3−1)2 | (t3−1)2 | (t3−1)2 |
5t | 5t | 5 | (−3t2) | |||||
∫ | dt=−∫ | dt+ | ∫(−t2) | dt | ||||
(t3−1)2 | t3−1 | 3 | (t3−1)2 |
5t | 5t | 5 | t2 | 2t | ||||||
∫ | dt=−∫ | dt+ | (− | +∫ | dt) | |||||
(t3−1)2 | t3−1 | 3 | t3−1 | t3−1 |
5t | 5 | t2 | 5 | t | |||||
∫ | dt=− | − | ∫ | dt | |||||
(t3−1)2 | 3 | t3−1 | 3 | t3−1 |
1 | t2 | 5 | t2 | 5 | t | |||||
= | − | − | ∫ | dt | ||||||
2 | (t3−1)2 | 3 | t3−1 | 3 | t3−1 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |