ex | (e−1)2 | ||
> | x z nierówności Bernoulliego, na mocy tw. o 2 ciągach | ||
x | 4 |
ex | ||
limx→∞ | = ∞, stąd | |
x |
3x | ||
limx→∞ | = 0 | |
ex |
n(n−1) | n2 | |||
(e−1+1)n=1+n(e−1)+ | (e−1)2> | (e−1)2 | ||
2 | 4 |
en | (e−1)2 | ||
> | n | ||
n | 4 |
ex | (e−1)2 | ||
> | x | ||
x | 4 |
ex | ||
limx→∞ | = ∞ | |
x |
3x | ||
limx→∞ | = 0 | |
ex |
n(n−1) | n2 | |||
(e−1+1)n=1+n(e−1)+ | (e−1)2+...> | (e−1)2 | ||
2 | 4 |