| ex | (e−1)2 | ||
> | x z nierówności Bernoulliego, na mocy tw. o 2 ciągach | ||
| x | 4 |
| ex | ||
limx→∞ | = ∞, stąd | |
| x |
| 3x | ||
limx→∞ | = 0 | |
| ex |
| n(n−1) | n2 | |||
(e−1+1)n=1+n(e−1)+ | (e−1)2> | (e−1)2 | ||
| 2 | 4 |
| en | (e−1)2 | ||
> | n | ||
| n | 4 |
| ex | (e−1)2 | ||
> | x | ||
| x | 4 |
| ex | ||
limx→∞ | = ∞ | |
| x |
| 3x | ||
limx→∞ | = 0 | |
| ex |
| n(n−1) | n2 | |||
(e−1+1)n=1+n(e−1)+ | (e−1)2+...> | (e−1)2 | ||
| 2 | 4 |