n2+an+c−n2−bn−d | ||
lim √n2+an+c−√n2+bn+d = lim | = | |
√n2+an+c+√n2+bn+d |
(a−b)n+c−d | ||
= lim | = | |
n(√1+a/n+c/n2+√1+b/n+d/n2) |
a−b | ||
= lim U{a−b+(c−d)/n}{√1+a/n+c/n2+√1+b/n+d/n2 = | ||
2 |
n2 +n − 6 −(n2 +3n −7) | ||
an = √n2+ n −6 − √n2+ 3n −7 = | = | |
√n2+ n −6 =√n2+3n −7 |
− 2n +1 | ||
= | = | |
√n2 + n − 6 + √n2+3n − 7 |
−2 +1n | ||
= | ||
√1 +1n−6n2+ √1 +3n − 7n2 |
− 2 + 0 | ||
lim an = | = − 1 | |
√1 +0 −0 + √1 + 0 − 0 |
n2−7n+4 −(n2−4n−10) | ||
an = √n2−7n+4 − √n2 −4n −10 = | = | |
√n2−7n+4+√n2 −4n −10 |
−3n +14 | ||
= | = | |
√n2− 7n + 4 + √n2 − 4 n − 10 |
− 3 +14n | ||
= | ||
√1 − 7n + 4n2 + √1 − 4n − 10n2 |
− 3 + 0 | −3 | |||
lim an = | = | |||
√1 +0 +0+ √1 − 0 − 0 | 2 |
a2 − b2 | ||
Korzystamy z wzoru : a − b = | ||
a + b |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |