Mila:
p(x)=x
3+x+10
p(−2)= (−8)−2+10=0
Schemat Hornera x=−2
1 0 1 10
1 −2 5 0
x
3+x+10=(x+2)*(x
2−2x+5), Δ<0
3x2+x+3 | | A | | Bx+C | |
| = |
| + |
| |
(x+2)*(x2−2x+5) | | x+2 | | (x2−2x+5) | |
| A*(x2−2x+5)+(x+2)*(Bx+C) | |
P= |
| po wymnożeniu i uporządkowaniu w liczniku |
| (x+2)*(x2−2x+5) | |
3x
2+x+3= x
2*(A+B)+x*(−2A+2B+C)+5A+2C porównanie wsp.
A+B=3
−2A+2B+C=1
5A+2C=3
−−−−−−−−−
B=3−A
−2*A+2*(3−A)+C=1 i 5A+2C=3⇔
−−−−−
−4A+C=−5 /*(−2)⇔8A−2C=10
5A+2C=3
=====+
13A=13⇔A=1, B=2 ,
2C=3−5
C=−1
===
A=1,B=2, C=−1