n2−n−n2+2n−1 | 1 | ||
→ | |||
n(√1/n2−1/n+1−1/n) | 2 |
√n2−n + n − 1 | ||
lim √n2−n − n + 1 = lim [√n2−n − (n − 1)]* | = | |
√n2−n + n − 1 |
n2 − n − (n−1)2 | n2−n−n2+2n−1 | |||
= lim | = lim | = | ||
√n2−n + n − 1 | √n2−n + n − 1 |
n − 1 | n−1 | |||
= lim | = lim | = | ||
√n2−n + n − 1 | √n2(1−1]n)+n−1 |
n − 1 | ||
= lim | = | |
|n|√(1−1]n) + n + 1 |
| 1 | ||||||||||||
= lim | = | ||||||||||||
| 2 |