3 | ||
[ln(1+3x)]' = | = ∑n=0∞(−1)n(3x)n dla |3x| < 1 | |
1+3x |
(−3)nxn+1 | ||
ln(1+3x) = ∑n=0∞3 | dla |3x| < 1 | |
n+1 |
(−1)n(3)nxn+2 | ||
2x ln(1+3x) = ∑n=0∞6 | dla |3x| < 1 | |
n+1 |
1 | ||
sin2(3x) = | (1 − cos(6x)) | |
2 |
x2 | x4 | x6 | ||||
cosx = 1 − | + | − | + ... | |||
2! | 4! | 6! |
(6x)2 | (6x)4 | (6x)6 | ||||
cos(6x) = 1 − | + | − | + ... = | |||
2! | 4! | 6! |
62 | 64 | 66 | ||||
= 1 − | *x2 + | *x4 − | *x6 + ... | |||
2! | 4! | 6! |
62 | 64 | 66 | ||||
1 − cos(6x) = 1 − (1 − | *x2 + | *x4 − | *x6 + ...) = | |||
2! | 4! | 6! |
62 | 64 | 66 | ||||
= | *x2 − | *x4 + | *x6 − ... | |||
2! | 4! | 6! |
1 | 1 | 62 | 64 | 66 | ||||||
sin2(3x)= | (1−cos(6x))= | ( | *x2− | *x4+ | *x6−...) | |||||
2 | 2 | 2! | 4! | 6! |
(−3)n62n+1x2n+1 | ||
[sin2(3x)]' = 2sin(3x)cos(3x)*3 = 3sin(6x) = ∑n=0∞ | ||
(2n+1)! |
(−3)n62n+1x2n+2 | ||
sin2(3x) = ∑n=0∞ | ||
(2n+2)! |