x4+3y2 | ||
x ≠ 0 I a−b=x , a2−b2=y I a3−b3=z , to z= | ||
4x |
(a−b)4 + 3(a2−b2)2 | ||
a3−b3= | ||
4(a−b) |
((a−b)2)2 +3(a4−2a2b2+b4) | ||
P= | ||
4a−4b |
(a2−2ab+b2)2 +3a4−6a2b2+3b4 | ||
P= | ||
4a−4b |
a4−4a2b2+b4−4a3b+2a2b2−4ab3+3a4−6a2b2+3b4 | ||
P= | ||
4a−4b |
4a4−8a2b2−4ab3+4b4−4a3b | ||
P= | ||
4a−4b |
x4+3y2 | (a−b)4+3(a−b)2(a+b)2 | |||
z= | ⇔ z= | ⇔ | ||
4x | 4(a−b) |
1 | 3 | 1 | 3 | |||||
⇔ z= | (a−b)3+ | (a−b)(a+b)2 ⇔ z=(a−b)( | (a−b)2+ | (a+b)2) ⇔ | ||||
4 | 4 | 4 | 4 |
y | ||
a2 − b2 = y ⇒ a + b = | ||
x |
y + x2 | ||
a = | ||
2x |
y − x2 | ||
b = | ||
2x |
y + x2 | y − x2 | |||
a3 − b3 = x3 + 3abx = x3 + 3 • | • | • x = | ||
2x | 2x |
3y2 − 3x4 | 4x4 + 3y2 − 3x4 | x4 + 3y2 | ||||
x3 + | = | = | = z | |||
4x | 4x | 4x |
y2 | ||
(a + b)2 = | ||
x2 |
y2 | x2 | y2 − 4x4 | ||||
ab = | − | = | ||||
4x2 | 4 | 4x2 |