2 | 4 | 8 | 8 | 1 | 1 | |||||||
rozwiąż równanie 1+ | + | + | +... = | (1+ | + | +...) | ||||||
x | x2 | x3 | 15 | x2 | x4 |
1 | 8 | 1 | ||||
|x| > 2, | = | |||||
1−2/x | 15 | 1 −1/x2 |
2 | 2 | |||
dzieki ale mam pytanie jesli q = | i |q| < 1 to wtedy | | | < 1 to jak to | ||
x | x |
2 | ||
| | | < 1 | |
x |
|2| | |
< 1 | |
|x| |
2 | |
< 1 /*|x| | |
|x| |
2−4+6−8+...+(4n−2)−4n | ||
lim n−>∞ | jak to rozwiazac bo jak licze sume szeregu z licznika | |
3n−1 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |