matematykaszkolna.pl
ll asi: Oblicz granice funkcji
 sin3x−3x 
limx−−>0

 x3 
undefined
19 lis 11:31
Adamm:
 sin(3x)−3x 3cos(3x)−3 cos(3x)−1 
limx→0

= limx→0

= limx→0

=
 x3 3x2 x2 
 −2sin2(3x/2) 9−sin2(3x/2) 
limx→0

= limx→0


=
 x2 2(3x/2)2 
 9 
= −

 2 
19 lis 11:37
Mariusz: Można bez de l'Hospitala Rozwińmy sinusa sin(3x)=sin(2x)cos(x)+cos(2x)sin(x) sin(3x)=(sin(x)cos(x)+cos(x)sin(x))cos(x)+(cos(x)cos(x)−sin(x)sin(x))sin(x) sin(3x)=2sin(x)cos(x)2+(cos(x)2−sin(x)2)sin(x) sin(3x)=2sin(x)(1−sin2(x))+(1−2sin(x)2)sin(x) sin(3x)=3sin(x)−4sin3(x)
 3sin(x)−4sin3(x)−3x 
limx→0

=
 x3 
 sin(x) sin(x)−x 
−4*limx→0(

)3+3*limx→0

 x x3 
 sin(3x)−3x 
limx→0

=−4+3g
 x3 
Niech 3x=t t→0 gdy x→0
 sin(t)−t sin(t)−t 
limt→0

=27*limt→0

 (t/3)3 t3 
−4+3g=27g −4=24g
 1 
g=−

 6 
 sin(3x)−3x 3 9 
limx→0

=−4−

=−

 x3 6 2 
20 lis 02:42
lol: Z rozwinięcia sinusa w szereg potęgowy. sin x = x −x3/3! + o(x3) Zatem limx−>0 (sin(3x)−3x)/x3 = limx−>0 (3x−27/6x3+o(x3)−3x)/x3 = = limx−>0 −27/6 + o(x3)/x3 = −27/6 = −9/2
20 lis 03:00