| tgx | |||||||||||
b) | ≤ 0 | ||||||||||
|
| 1 | |
sinx2cosx>0 | |
| 2 |
| sinx | 2sin(x/2)cos(x/2) | |||
tgx= | = | |||
| cosx | cos2(x/2)−sin2(x/2) |
| 2sin2(x/2)cos(x/2) | |
≤0 | |
| cos3(x/2)−cos(x/2)sin2(x/2) |
| sin2(x/2) | |
≤0 | |
| cos2(x/2)−sin2(x/2) |
| 1 | ||
czemu sinxsin(2x) = | sinx2cosx ![]() | |
| 2 |
| sin2(x/2) | ||
a czemu | = sin2(x/2)cosx ? | |
| cos2(x/2)−sin2(x/2) |
| sin2(x/2) | ||
to niebedzie | ? | |
| cosx |
| π | 3π | |||
a w odp mam ze x∊( | ; π) U ( | ; 2π) czyli jakby cosx mialby byc < 0 a nie ≤ 0 czemu | ||
| 2 | 2 |