sinx−x | cosx−1 | cos3x−cos2x | ||||||||||
lim | = lim | = lim | = | |||||||||
tgx−x |
| 1−cos2x |
cos2x | 1 | |||
= lim | = − | |||
−(1+cosx) | 2 |
1 | ||
2. sin2(2x)= | (1−cos(4x)) | |
2 |
1 | 1 | 1 | |||
∫1−cos(4x) dx = | x− | sin(4x)+c | |||
2 | 2 | 8 |
dx | dx | |||
∫ | = ∫ | |||
x2−4x+8 | (x−2)2+4 |
1 | dt | 1 | 1 | 1 | |||||
∫ | = | arctg(t)+c = | arctg( | (x−2))+c | |||||
2 | t2+1 | 2 | 2 | 2 |
sin x − x | ||
f(x) = | ||
tg x − x |
cos x − 1 | − sin x | |||||||||
lim f(x) = | = lim | = | ||||||||
| 2 sin x*cos x |
−1 | ||
= lim | = −0,5 | |
2 cos x |
8 | 1 | |||
∫24f(x)−g(x)dx=∫246−x− | dx = [ 6x − | x2−8ln|x| ]24 = | ||
x | 2 |