1 | ||
an = | (an−2 + an−1) n≥3 | |
2 |
1 | ||
Powinno wyjść: limn→∞ an = | (a+2b) | |
3 |
1 | ||
an−an−1=− | (an−1−an−2) | |
2 |
1 | ||
o różnicy − | ze wzoru na postęp geometryczny | |
2 |
a2−a1 | 2 | ||||||||||||
lim (an−a1)= | = | (b−a) | |||||||||||
| 3 |
1 | ||
lim an = | (a+2b) | |
3 |
1 | 1 | |||
∑n=3∞anxn= | ∑n=3∞an−2xn+ | ∑n=3∞an−1xn | ||
2 | 2 |
1 | ||
∑n=3∞anxn= | x2∑n=3∞an−2xn−2+ | |
2 |
1 | |
x∑n=3∞an−1xn−1 | |
2 |
1 | 1 | |||
∑n=3∞anxn= | x2∑n=1∞anxn+ | x∑n=2∞anxn | ||
2 | 2 |
1 | ||
∑n=1∞anxn−ax−bx2= | x2∑n=1∞anxn+ | |
2 |
1 | |
x(∑n=1∞anxn−ax) | |
2 |
1 | 1 | |||
A(x)−ax−bx2= | x2A(x)+ | x(A(x)−ax) | ||
2 | 2 |
1 | 1 | 1 | ||||
A(x)−ax−bx2= | x2A(x)+ | xA(x)− | ax2 | |||
2 | 2 | 2 |
1 | 1 | 1 | ||||
A(x)− | xA(x)− | x2A(x)=(b− | a)x2+ax | |||
2 | 2 | 2 |
(2b−a)x2+2ax | ||
A(x)= | ||
2−x−x2 |
(2b−a)x2+2ax | ||
A(x)= | ||
(2+x)(1−x) |
(2b−a)x2+2ax | Ax | Bx | |||
= | + | ||||
(2+x)(1−x) | 2+x | 1−x |
(2b−a)x2+2ax | 2 | x | 1 | x | ||||||||||||||
= | (a−b) | + | (a+2b) | |||||||||||||||
(2+x)(1−x) | 3 |
| 3 | 1−x |
2 | −1 | 1 | ||||
A(x)= | (a−b)∑n=1∞( | )nxn+ | (a+2b)∑n=1∞xn | |||
3 | 2 | 3 |
2 | −1 | 1 | ||||
an= | (a−b)( | )n+ | (a+2b) | |||
3 | 2 | 3 |