1 | 1 | |||
limx −> 0 ( | − | ) = | ||
x | ex − 1 |
2cosx − 2 +x2 | ||
limx −>0 | = | |
x2(sinx)2 |
1 | 1 | ex − 1 − x | ||||
f(x) = | − | = | ||||
x | ex − 1 | x*ex − x |
ex −1 | ex | 1 | 1 | |||||
lim f(x) = lim | = lim | = | = | |||||
ex +x*ex −1 | ex + ex + x*ex | 1+1+0 | 2 |
1 | 1 | ex−1−x | ||||
limx→0( | − | ) = limx→0 | = | |||
x | ex−1 | x(ex−1) |
ex−1 | ex | 1 | ||||
= limx→0 | = limx→0 | = | ||||
ex−1+xex | 2ex+xex | 2 |
2cosx−2+x2 | 2cosx−2+x2 | |||
lim | = lim | = | ||
x2(sinx)2 | x4 |
−2sinx+2x | −2cosx+2 | 2sinx | 1 | |||||
= lim | = lim | = lim | = | |||||
4x3 | 12x2 | 24x | 12 |
sinx | ||
ponieważ limx→0 | = 1 | |
x |