| g(x)+g(−x) | ||
g mozemy zapisacw postaci g(x)=p(x)+n(x), gdzie p(x)= | zaś | |
| 2 |
| g(x)−g(−x) | ||
n(x)= | ||
| 2 |
| 1 | ||
c)Przedstaw funkcję f(x)= | okreslona w zbiorze R\ {−2, 2} jako sume funkcji parzystaj i | |
| x−2 |
| f(−x) + f(x) | ||
a. p(−x) = | = p(x) | |
| 2 |
| f(−x) − f(x) | −(f(x) − f(−x) | |||
b. n(−x) = | = | = −n(x) | ||
| 2 | 2 |
| 1x−2 − 1x+2 | ||
c. p(x) = | ||
| 2 |
| 1x−2 + 1x+2 | ||
n(x) = | ||
| 2 |
| 1x−2 − 1x+2 | 1x−2 + 1x+2 | |||
f(x) = | + | |||
| 2 | 2 |
| g(x)+g(−x) | ||
p(x)= | ||
| 2 |
| g(−x)+g(x) | ||
p(−x)= | ||
| 2 |
| g(x)+g(−x) | g(−x)+g(x) | ||
= | |||
| 2 | 2 |
| 1 | ||
f(−x)= | ||
| −x−2 |
| −1 | ||
f(x)= | ||
| x−2 |
| 1 | −1 | −x+2−x−2 | |||
+ | = | ||||
| −x−2 | x−2 | (x+2)(x−2) |