1 | ||
wyznacz wartość sin4 x + cos4 x wiedząc, że sinx + cosx = | ||
4 |
1 | ||
sin2(x)+cos2(x)+2sinxcosx= | ||
16 |
1 | ||
1+2sinxcosx= | ||
16 |
15 | ||
sin(2x)=− | ||
16 |
1 | ||
(sin2(x)+cos2(x))2=sin4x+cos4(x)+ | 4sin2xcos2(x) | |
2 |
225 | ||
1=sin4x+cos4(x)+ | ||
512 |
512−225 | 287 | |||
sin4x+cos4(x)= | = | |||
512 | 512 |
3 | ||
+4sin(x)cos(x)(sin2(x)+cos2(x))+ | (4sin2(x)cos2(x)) | |
2 |
3 | ||
(sin(x)+cos(x))4=sin4(x)+cos4(x)+4sin(x)cos(x)+ | (4sin2(x)cos2(x)) | |
2 |
3 | ||
(sin(x)+cos(x))4=sin4(x)+cos4(x)+2((sin(x)+cos(x))2−1)+ | ((sin(x)+cos(x))2−1) | |
2 |
3 | |
((sin(x)+cos(x))4−2(sin(x)+cos(x))2+1) | |
2 |
1 | 1 | |||
sin4(x)+cos4(x)=− | (sin(x)+cos(x))4+(sin(x)+cos(x))2+ | |||
2 | 2 |
1 | 32 | 256 | ||||
sin4(x)+cos4(x)=− | + | + | ||||
512 | 512 | 512 |
287 | ||
sin4(x)+cos4(x)= | ||
512 |
1 | ||
sinx + cosx = | , | |
4 |
1 | ||
(sinx + cosx)2 = ( | )2 | |
4 |
1 | ||
sin2x + 2sinxcosx + cos2x = | , | |
16 |
1 | ||
1 + 2sinxcosx = | ||
16 |
15 | ||
(1) 2sinxcosx = − | . | |
16 |
225 | ||
4sin2xcos2x = | ||
256 |
225 | ||
2sin2xcos2x = | , | |
512 |
225 | 287 | |||
sin4x + cos4x = 1 − | = | . | ||
512 | 512 |