a2 + b2 + c2 | ||
Wykaz że jeżeli a+b+c=0, to | = 13 | |
(a−b)2 + (b−c)2 + (c−a)2 |
a2+b2+c2 | 1 | ||
= | |||
(2a+c)2+(2b+a)2+(2c+b)2 | 3 |
a2+b2+c2 | 1 | ||
= | |||
5a2+5b2+5c2+4ac+4bc+4ab | 3 |
a2+b2+c2 | |
= 1/3 | |
(a−b)2 +(b−c)2+(c−a)2 |
(a+b+c)2−2*(ab+ac+bc) | |
= | |
2a2+2b2+2c2−2*(ab+ac+bc) |
−2*(ab+ac+bc) | ||
= | = | |
2*[(a+b+c)2−2*(ab+ac+bc)]−2*(ab+ac+bc) |
−2*(ab+ac+bc) | −2 | 1 | ||||
= | = | = | ||||
2*0+2*(−2)*(ab+ac+bc)−2*(ab+ac+bc) | −6 | 3 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |