| 1 | ||
1. ∫ | ||
| x2+x−6 |
| 1 | ||
2. ∫ | ||
| x2+3x−4 |
| x2 | ||
3. ∫ | ||
| 4−x6 |
| 1 | ||
4. ∫ | ||
| x2−5x+6 |
| dt | |
=x2dx | |
| 3 |
| 1 | dt | 1 | dt | 1 | dt | 1 | dt | ||||||||
∫ | = | ∫ | = | ∫ | + | ∫ | = | ||||||||
| 3 | 4−t2 | 3 | (2−t)(2+t) | 12 | 2−t | 12 | 2+t |
| 1 | 1 | −1 | 1 | |||||
=− | ln|2−t|+ | ln|t+2|+C= | ln|2−x3|+ | ln|2+x3|+C | ||||
| 12 | 12 | 12 | 2 |
| 1 | A | B | |||
= | + | ||||
| x2+x−6 | x+3 | x−2 |
| 1 | A | B | |||
= | + | ||||
| x2+3x−4 | x+4 | x−1 |
| x2 | ||
∫ | dx | |
| 4−x6 |
| 1 | dt | ||
∫ | |||
| 3 | 4−t2 |
| 1 | A | B | |||
= | + | ||||
| 4−t2 | 2−t | 2+t |
| 1 | A | B | |||
= | + | ||||
| x2−5x+6 | x−2 | x−3 |
| 1 | 1 | |||
Jasne, powinno być | zamiast | ![]() | ||
| 12 | 2 |