| 1−2x | ||
∫ | dx | |
| √5x2+5x+2 |
| 1−2x | ||
=√5∫ | dx | |
| √25x2+25x+10 |
| t2−10 | ||
x= | ||
| 10t+25 |
| 10t2+25t−5t2+50 | 5t2+25t+50 | |||
t−5x= | = | |||
| 10t+25 | 10t+25 |
| 2t(10t+25)−10(t2−10) | ||
dx= | dt | |
| (10t+25)2 |
| 10t2+50t+100 | ||
dx= | dt | |
| (10t+25)2 |
| 2t2−20 | 10t+25 | 10t2+50t+100 | |||
√5∫(1− | ) | dt | |||
| 10t+25 | 5t2+25t+50 | (10t+25)2 |
| −2t2+10t+45 | 10t+25 | 10t2+50t+100 | ||
√5∫ | dt | |||
| 10t+25 | 5t2+25t+50 | (10t+25)2 |
| √5 | 4t2−20t−90 | |||
− | ∫ | dt | ||
| 25 | (2t+5)2 |
| √5 | 4t2−20t−90 | |||
− | ∫ | dt | ||
| 25 | (2t+5)2 |
| √5 | (2t+5)2−20(2t+5)−15 | |||
− | ∫ | dt | ||
| 25 | (2t+5)2 |
| √5 | 2 | 15 | −2 | |||||
− | (∫dt−10∫ | dt+ | ∫ | dt) | ||||
| 25 | 2t+5 | 2 | (2t+5)2 |
| √5 | 1 | 15 | 1 | ||||
− | ( | (2t+5)+ | −10ln|2t+5|)+C | ||||
| 25 | 2 | 2 | 2t+5 |
| √5 | (2t+5)2+15 | |||
− | ( | −20ln|2t+5|)+C | ||
| 50 | 2t+5 |
| √5 | 4t2+20t+40 | |||
− | ( | −20ln|2t+5|)+C | ||
| 50 | 2t+5 |
| √5 | 20t2+100t+200 | |||
− | ( | −20ln|2t+5|)+C | ||
| 50 | 10t+25 |
| 2√5 | ||
− | (√25x2+25x+10−5ln|10x+5+2√25x2+25x+10|)+C | |
| 25 |