Dziedzina funkcji
Mati: Wyznacz dziedzinę funkcji:
| 1 | |
f(x) = √|x−2|−1 + |
| |
| √x3−6x2+9x | |
6 lis 19:21
Jerzy:
Warunki:
1) Ix−2I − 1≥ 0
2) x3 − 6x2 + 9x > 0
6 lis 19:22
Mati: 1) Dla x∊ (−
∞, 2>
−x+x−1≥0
−x+1≥0
x≤1 <=> x ∊ (−
∞,1>
Dla x ∊ <2,+
∞)
x−2−1≥0
x−3≥0
x≥3 <=> x∊ <3,+
∞)
2) x
3−6x
2+9x>0
x(x
2−6x+9)>0
x>0 v x
2−6x+9>0
x ∊ (−
∞,0) v x=3 −−> 3>0 zawsze prawda
Odp: x∊ (0,1> ∪ <3,+
∞)
Czy dobrze to rozwiązałem?
6 lis 19:40
Mati: tam przy 1) mialo byc −x+2−1≥0 i dalej...
6 lis 19:47
Mati:
6 lis 19:58
Mati: Czy ktoś może mi pomóc i zweryfikować
6 lis 20:22
Mati: ...
6 lis 20:35
Natalia: Można to też zrobić bez przedziałów
Ix−2I − 1≥ 0
Ix−2I≥ 1
x−2≥1 lub x−2≤−1
x≥3 lub x≤1
x ∊(−∞;1> suma <3;∞)
6 lis 20:38
Natalia:
Drugi przypadek wygląda tak:
x(x
2−6x+9)>0
x(x−3)
2>0
x
1=0 x
2=3
x należy (0;3) suma (3;
∞)
Mając nierówność kwadratową musimy wyznaczyć jej miejsca zerowe, narysować wykres i dopiero
odczytać przedział.
6 lis 20:44
Mati: Dziękuję
A jeszcze takie zadanie...
Rozwiąż nierówność:
3*(
116)
x < 15*(
14)
x −12
I zaczynam tak
3*(
12)
4x < 15*(
12)
2x − 12
i podstawienie (
12)
2x, gdzie t>0
nie wiem tylko w którym momencie zmieniam znak jak podstawa mniejsza niż 1 i jak to dalej
rozwiązać..
6 lis 21:09
Mati:
6 lis 21:20
Mati:
6 lis 21:35
Mati: halo
6 lis 21:46
Mila:
3t
2−15t+12<0 /:3
t
2−5t+4<0
Δ=25−16=9
t
1=1 lub t
2=4
t∊(1,4)
1<t<4
| 1 | | 1 | | 1 | | 1 | |
( |
| )x> |
| )0 i |
| )x<( |
| )−1 |
| 4 | | 4 | | 4 | | 4 | |
x<0 i x>−1
x∊(−1,0)
6 lis 21:52
Mati: Dziękuję, moje pytanie jest takie..czemu nie mogę zrobić tak, że t=(12)2x ?
6 lis 22:07
Mati: A dobrze mój błąd...można tak zrobić tylko coś źle zauważyłem
6 lis 22:09
Mati: Jeszcze mam taki przykład
Rozwiąż nierówność:
D=R − {
−12, 1}
2(1−x) | | 3(2x−1) | |
| − |
| ≤ 0 |
(2x+1)(1−x) | | (2x+1)(1−x) | |
2(1−x)−3(2x+1) | |
| ≤ 0 |
(2x+1)(1−x) | |
(−8x
2−1)(x−1)(x+
12) ≤ 0
x=
18 v x=1 v x=
−12
Odp: x∊ (−
∞,
18> ∪ (
−12,1)
czy dobrze
6 lis 22:21
Mati: oczywiście powinno być bo jak zwykle się pomyliłem...
(−8x−1)(x−1)(x+12) ≤ 0
x=−18 v x=1 v x=−12
Odp: x∊ (−∞, −18> ∪ (−12, 1)
6 lis 22:24
Mati:
6 lis 22:36
5-latek: czemu nie wpiszesz sobie do wolframa ?
6 lis 22:40
Mila:
Nie jest dobrze .
U{−8x−1}{(2x+1)*(1−x)≤0
U{8x+1)*(2x+1)*(x−1)≤0
6 lis 22:42