| ||||||||
3√1+t = ∑n=0∞ | tn | |||||||
| (−(x+2)2)n | ||||||||
−23√1−(x+2)2/8 = ∑n=0∞ −2 | |||||||||
| 8n |
| 2 x+4 | |
, | |
| 3(x2+4 x−4)2/3 |
| 2 | 2 (2 x+4)2 | ||
− | , | ||
| 3 (x2+4 x−4)2/3 | 9 (x2+4 x−4)5/3 |
| 10 (2 x+4)3 | 4 (2 x+4) | ||
− | , | ||
| 27 (x2+4 x−4)8/3 | 3 (x2+4 x−4)5/3 |
| 80 (2 x+4)4 | 40 (2 x+4)2 | |||
− | + | |||
| 81 (x2+4 x−4)11/3 | 9 (x2+4 x−4)8/3 |
| 8 | ||
− | , | |
| 3(x2+4x−4)5/3 |
| 880 (2 x+4)5 | 1600 (2 x+4)3 | ||
− | + | ||
| 243 (x2+4 x−4)14/3 | 81 (x2+4 x−4)11/3 |
| 200(2x+4) | ||
| 9 (x2+4 x−4)8/3 |