| ||||||||
3√1+t = ∑n=0∞ | tn | |||||||
| (−(x+2)2)n | ||||||||
−23√1−(x+2)2/8 = ∑n=0∞ −2 | |||||||||
8n |
2 x+4 | |
, | |
3(x2+4 x−4)2/3 |
2 | 2 (2 x+4)2 | ||
− | , | ||
3 (x2+4 x−4)2/3 | 9 (x2+4 x−4)5/3 |
10 (2 x+4)3 | 4 (2 x+4) | ||
− | , | ||
27 (x2+4 x−4)8/3 | 3 (x2+4 x−4)5/3 |
80 (2 x+4)4 | 40 (2 x+4)2 | |||
− | + | |||
81 (x2+4 x−4)11/3 | 9 (x2+4 x−4)8/3 |
8 | ||
− | , | |
3(x2+4x−4)5/3 |
880 (2 x+4)5 | 1600 (2 x+4)3 | ||
− | + | ||
243 (x2+4 x−4)14/3 | 81 (x2+4 x−4)11/3 |
200(2x+4) | ||
9 (x2+4 x−4)8/3 |