| (x2 − 1)3 | ||
a) lim x→1 | ||
| 2x − 2 |
| x4 − 1 | ||
b) lim x→1 | ||
| x3 − 1 |
| 1 | ||
c) lim x→∞ (1 + | )√x | |
| x |
| x2 − 2x − 8 | ||
d) lim x→−2 | ||
| (x + 2)3 |
| (x−1)(x+1)(x2+1) | ||
lim x→1 | ... skracaj i podstawiaj | |
| (x−1)(x2+x+1) |
| 1 | 1 | |||
c) (1+ | )√x=(1+ | )x*(√x/x) | ||
| x | x |
| 1 | ||
lim (1+ | )x*(√x/x) = [ e0 ] = 1 | |
| x |
| x2 − 2x − 8 | (x+2) (x−4) | |||
d) lim x→−2 | = lim x→−2 | = | ||
| (x+2)3 | (x+2)3 |
| (x−4) | (−2−4) | −6 | ||||
= lim x→−2 | = | = | = 0 | |||
| (x+2)2 | (−2+2)2 | 0 |
| x−4 | ||
limx→−2 | = −∞ | |
| (x+2)2 |