√2 | √2 | |||
sinx*sin(x−450)=sinx*(sinx | −cosx | )= | ||
2 | 2 |
√2 | √2 | |||
[ | sin2x− | sinxcosx]'= | ||
2 | 2 |
√2 | ||
√2sinxcosx− | [sinxcosx]'= | |
2 |
√2 | ||
√2sinxcosx− | (cos2x−sin2x) | |
2 |
√2 | √2 | |||
√2sinxcosx− | cos2x+ | sin2x | ||
2 | 2 |
√2 | |
(2sinxcosx−cos2x+sin2x)=0 | |
2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |