ekstrema lokalne
darka: Wyznacz ekstrema lokalne funkcji:
1) f(x)=sinx * sin(x−45stopni)
2) f(x)=cos2x/cosx
2 lis 20:55
zef: | √2 | | √2 | |
sinx*sin(x−450)=sinx*(sinx |
| −cosx |
| )= |
| 2 | | 2 | |
| √2 | | √2 | |
[ |
| sin2x− |
| sinxcosx]'= |
| 2 | | 2 | |
| √2 | |
√2sinxcosx− |
| [sinxcosx]'= |
| 2 | |
| √2 | |
√2sinxcosx− |
| (cos2x−sin2x) |
| 2 | |
| √2 | | √2 | |
√2sinxcosx− |
| cos2x+ |
| sin2x |
| 2 | | 2 | |
√2 | |
| (2sinxcosx−cos2x+sin2x)=0 |
2 | |
2sinxcosx−cos
2x+sin
2x=0
(sinx+cosx)
2=2cos
2x
(sinx+cosx)
2=(
√2cosx)
2
sinx+cosx=
√2cosx lub sinx+cosx=−
√2cosx
itd.
2 lis 21:03