cos2x | ||
a) | = 1+sinx | |
1−sinx |
tg2x | ||
b) | = 1+tg2x | |
sinx |
π | ||
a) sinx ≠ 1 ⇒ x ≠ | + 2kπ, gdzie k ∊ C | |
2 |
cos2x | 1 − sin2x | (1 − sinx)(1 + sinx) | |||
= | = | = 1 + sinx | |||
1 − sinx | 1 − sinx | 1 − sinx |
cos2x | cos2x | 1+sinx | cos2x(1+sinx) | |||||
L = | = | * | = | = | ||||
1−sinx | 1−sinx | 1+sinx | 1 − sin2x |
cos2x(1+sinx) | ||
= | = 1 + sinx = P | |
cos2x |
sin2x | ||
tg2(x) = | ||
cos2x |
| sin2x | 1 | 1 | |||||||||||
L = | = | * | = | = | ||||||||||
sin2x | cos2x | sin2x | cos2x |
sin2x + cos2x | sin2x | cos2x | ||||
= | = | + | = tg2x + 1 = P | |||
cos2x | cos2x | cos2x |