matematykaszkolna.pl
Oblicz granice funkcji Hello: Granice, jeśli mam obliczyć granice np. lim|(1−4n)/(2x+5)| n→ to licze granice, a potem "zmieniam" np. z −2 na 2()bo wartosc bezwzgledna, czy moze sprawdzam "wykresy funckji" i jesli jedna z nich jest rosnaca to, a druga malejaca to zmieniam znak(np. z −2 na 2)? I jeszcze prosilbym o wytlumaczenie jak liczy sie granice w tym przypadku: lim (1+3n−5n2−6n3)/(7−4n−8n2) n→ Odpowiedź w pierwszym przykładzie to 2, a w drugim +
1 lis 17:54
1 lis 18:00
Hello: Nie ma tam zadnych wartosci bezwzglednych. hmm
1 lis 18:20
Jack: pierwszy przyklad naprawde ciekawy, w liczniku mamy "n" w mianowniku "x" wiec szczerze mowiac, granica nie istnieje tak dlugo jak nie wiemy co to jest x.
1 lis 18:25
Jack: 2)
 −6n3 − 5n2 + 3n + 1 
lim

=
 −8n2 − 4n + 7 
n→
 
 5 3 1 
n3(−6 −

+

+

)
 n n2 n3 
 
= lim

=
 
 4 7 
n2(−8 −

+

)
 n n2 
 
 
 5 3 1 
n(−6 −

+

+

)
 n n2 n3 
 
= lim

=
 
 4 7 
−8 −

+

 n n2 
 
 coś 
wszedzie gdzie mamy

to dąży do zera, dlatego zostaje nam
 coś z "n" 
mowiac niematematycznie w liczniku −6n, w mianowniku −8, zatem minusy sie skracaja wiec mamy 6n/8, ale n−> wiec mamy 6* nieskonczonosc / 8 a to wiadomo ze sie rowna nieskonczonosc
1 lis 18:29