W przypadku 3√−8i, |z|=8, cosφ=0, sinφ=−1 ile wynosi φ?
yeyo: W przypadku 3√−8i, |z|=8, cosφ=0, sinφ=−1 ile wynosi φ?
31 paź 18:19
yeyo: φ=32π?
31 paź 18:23
Mila:
z=−8i
31 paź 18:24
yeyo: @Mila dziękuję serdecznie :~)
31 paź 18:26
Janek191:
φ = 1,5 π
31 paź 18:26
Mila:
31 paź 18:53
Mila:
3√−8i
z=−8i
|z|=8
| | | | |
zk=3√8*(cos |
| +i sin |
| ), k∊{0,1,2} |
| 3 | | 3 | |
| 3π | | 3π | |
z0=2*(cos |
| +i sin |
| )=2*(0+i)=2i |
| 6 | | 6 | |
| 7π | | 7π | | √3 | | 1 | |
z1=2*(cos |
| +i sin |
| )=2*(− |
| − |
| i)=−√3−i |
| 6 | | 6 | | 2 | | 2 | |
| 11π | | 11π | | √3 | | 1 | |
z2= 2*(cos |
| +i sin |
| )=2*( |
| − |
| i)=√3−i |
| 6 | | 6 | | 2 | | 2 | |
31 paź 20:41
yeyo: @Mila: Takie wyniki również mi wyszły
Miałem czarną dziurę z odczytaniem kąta φ, ale już
wszystko sobie przypomniałem
31 paź 20:45
Mila:
Dobrze.
31 paź 20:46