Dla jakich wartośc parametru m okrąg jest styczny do prostej?
Ola: Dla jakich wartości parametru m okrąg o równaniu (x−m)2+(y−2)2=10 jest styczny do prostej o
równaniu y=x+m?
31 paź 14:24
Jack:
2 sposoby.
1)
podstaw y=x+m do rownania okregu czyli otrzymasz
(x−m)2 + (x−m−2)2 = 10
a potem to juz rownanie kwadratowe.
2)
wiemy ze promien okregu = √10
a srodek okregu to S(m,2)
styczna ma rownanie x − y + m = 0
wiec podstawiamy do wzoru na odleglosc prostej od punktu
d = U{|Ax0 + By0 +c|}{√A2+B2
gdzie u nas
d = √10
A = 1, B = −1, C = m
x0 = m, y0=2
31 paź 14:56
Jack:
poprawka :
| | |Ax0 + By0 + C| | |
d = |
| |
| | √A2+B2 | |
31 paź 15:04
Ola: Dziękuję za pomoc

Już rozwiązane.
31 paź 15:16