5π | π | π | ||||
2sin(6π− | )+√2cos(4π− | )−tg | = | |||
6 | 4 | 4 |
π | π | 1 | √2 | |||||
= −2sin(π− | )+√2*cos | −1= −2* | +√2* | −1= −2+1=−1 | ||||
6 | 4 | 2 | 2 |
31π | π | π | π | 1 | ||||||
2sin | =2sin(5π+ | )=2sin(π+ | })=−2sin(π+ | })=−2* | =−1 | |||||
6 | 6 | 6 | 6 | 2 |
15π | 7π | π | √2 | |||||
√2cos | =√2cos(2π+ | )=√2cos(2π− | )=√2* | =1 | ||||
4 | 4 | 4 | 2 |
5π | π | π | ||||
tg | =tg(π+ | )=tg( | )=1 | |||
4 | 4 | 4 |
31π | π | |||
nie rozumiem czemu akurat np | = 5π+ | i jak do tego dojsc | ||
6 | 6 |
31π | 30π | π | π | |||||
czyli sin( | )=sin( | + | )=sin(5π+ | )= | ||||
6 | 6 | 6 | 6 |
π | π | |||
sin(2*2π+π+ | )=sin(π+ | ) → widzimy że ten kąt znajduje się w 3 ćwiartce, a tam | ||
6 | 6 |
π | 1 | 1 | ||||
−sin( | )=−1* | =− | ||||
6 | 2 | 2 |
11π | π | π | 1 | |||||
cos | = cos 4π− | = cos | = | to poprawnie? bo w odp tez inny wynik | ||||
3 | 3 | 3 | 2 |
π | π | |||
cos(2π+2π− | )=cos(2π− | ) i tutaj widzisz że jest 4 ćwiartka czyli cosinus dodatni. | ||
3 | 3 |