ln(2−x) | ||
lim −>2 | ||
ln[sin(2−x)] |
2−x | 2−x | −1 | ||||
=lim(x→2) ln( | )=ln(lim(x→2) | )=ln(lim(x→2) | )= | |||
sin(2−x) | sin(2−x) | −cos(2−x) |
−1 | −sin(2−x) | |||
= lim | * | = 1 | ||
2−x | cos(2−x) |
| sin(2−x) | 0 | |||||||||||||
=lim(x→2) | =lim(x→2) | = [ | ] = | ||||||||||||
| cos(2−x)x | 1*2 |
−1 | −sin(2−x) | |||
lim | * | ale nie wiem dlaczego to równa się 1.. | ||
2−x | cos(2−x) |
2−x | ||
lim(x→2) | = 1 | |
sin(2−x) |
sinx | ||
ponieważ lim(x→0) | = 1 | |
x |
sin(2−x) | ||
raczej lim(x→2) | = 1, ale odwrotnie też działa | |
2−x |
sin(2−x) | ||
limx→2 | = 1 | |
2−x |
−1/(2−x) | ||
=limx−>2 | = 1 | |
−cos(2−x)/sin(2−x) |
−1 | ||
(ln(2−x))' = | ||
2−x |
1 | ||
(ln(2−x))'=− | ||
2−x |