| x3x | 1 | x3x | ||||
1. ∫ x3x dx = | − | ∫ 3x dx = | − | |||
| ln3 | ln3 | ln3 |
| 3x | ||
u' = 1 v = | ||
| ln3 |
| x3x | 3x | |||
= | − | + C | ||
| ln3 | ln23 |
| 1 | ||
2. ∫ xln2x dx = | x2ln2x − ∫ xlnx dx = E | |
| 2 |
| 1 | 1 | 1 | 1 | |||||
u' = 2lnx * | v = | x2 f' = | g = | x2 | ||||
| x | 2 | x | 2 |
| 1 | 1 | 1 | ||||
E = | x2ln2x − ( | x2lnx − | ∫ xdx) = | |||
| 2 | 2 | 2 |
| 1 | 1 | 1 | 1 | |||||
= | x2ln2x − | x2lnx + | * | x2 + C | ||||
| 2 | 2 | 2 | 2 |