x−1 | ||
Oblicz pochodną z f(x)= x*arctg | ||
x+1 |
x−1 | ||
Najpierw policz pochodną z | ||
x+1 |
2 | x−1 | x | ||||
Wychodzi mi | arctg | + | Możesz sprawdzić czy dobrze bo nie mam | |||
x2+2x+1 | x+1 | x2+1 |
x−1 | 1 | x−1 | |||||||||||||
f'(x) = arctg | + x* | *( | )' = .... i licz | ||||||||||||
x+1 |
| x+1 |
x − 1 | 2 | |||
wydaje mi się, że to będzie f'(x) = arctg( | ) + x*( | ) | ||
x +1 | (x2 +1)*(x + 1)2 |
x−1 | ||
dla x > −1, arctg | = arctg x −π/4 | |
x+1 |
x−1 | ||
dla x < −1, arctg | = arctg x + 3π/4 | |
x+1 |
x−1 | x | x−1 | ||||
(x arctg | ) ' = | + arctg | ||||
x+1 | 1+x2 | x+1 |