a=6√3
k=12
BE⊥SC i AE⊥SC
W ΔADS:
| 3√3 | √3 | |||
cosα= | = | |||
| 12 | 4 |
| √3 | ||
sin2α=1−( | )2 | |
| 4 |
| √13 | ||
sinα= | , α− kąt ostry | |
| 4 |
| s | √13 | s | ||||
sinα= | ⇔ | = | ⇔ | |||
| a | 4 | 6√3 |
| 3√39 | ||
s= | ||
| 2 |
| 3√39 | 3√39 | |||
(6√3)2=2*( | )2−2*( | )2*cosα | ||
| 2 | 2 |
| 2*9*39 | 2*9*39 | |||
36*3= | − | *cosα | ||
| 4 | 4 |
| 351 | 351 | |||
108− | =− | *cosα | ||
| 2 | 2 |
| 135 | 351 | |||
− | =−− | *cosα | ||
| 2 | 2 |
| 135 | 2 | |||
cosα= | * | |||
| 2 | 351 |
| 135 | ||
cosα= | ||
| 351 |
| 1 | ||
PΔABS= | *6√3*3√13=9√39 | |
| 2 |
| 1 | ||
9√39= | *12*s | |
| 2 |
| 3√39 | ||
s= | ||
| 2 |