1 | ||
an = (1 + | )3n | |
n2 +2 |
1 | ||
bn = (1 − | )n | |
n |
1 | ||
cn = (1 − | )2n + 1 | |
n2 |
1 | ||
dn = (1 + | )2n +1 | |
2n |
−1 | ||
bn= (1+ | )n = ? | |
n |
1 | 1 | |||
cn = (1 − | )*[( 1 − | )n2]0,5 | ||
n2 | n2 |
1 | 1 | |||
lim (1+ | )3n = lim ((1+ | )n2+2)3n/(n2+2) = [ e0 ] = 1 | ||
n2+2 | n2+2 |
1 | ||
lim cn = lim (1 − | )n2*((2n+1)/n2) = [ (e−1)0 ] = 1 | |
n2 |
1 | ||
lim dn = lim (1+ | )2n*(1+1/2n) = [ e1 ] = e | |
2n |
1 | 1 | |||
dn = ( 1 + | )*( 1 + | )2n | ||
2n | 2n |